
Monte Carlo approach to dendritic growth

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1985 J. Phys. A: Math. Gen. 18 L413

(http://iopscience.iop.org/0305-4470/18/8/002)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 31/05/2010 at 09:38

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/18/8
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J .  Phys. A: Math. Gen. 18 (1985) L413-L418. Printed in Great Britain 

LETTER TO THE EDITOR 

Monte Carlo approach to dendritic growth 

J Szkpt, J Cserti: and J Kertisz$ 
t Eotvos University, Solid State Department, H-1088 Budapest, Muzeum krt. 6-8, Hungary 
$ Institute for Technical Physics of the HAS, H-1325 Budapest, Hungary 

Received 1 March 1985 

Abstract. The connection between diff usion-limited aggregation and the equations of 
dendritic growth is critically examined. A different type of Monte Carlo simulation is 
proposed and used to construct two-dimensional dendrite-like patterns. The wavelength 
occurring for short times is in good agreement with the linear stability analysis. The time 
dependence of the characteristic wavelengths is also determined. 

Many nonlinear processes leading to pattern formation can be described by linear 
equations of diffusion, where the nonlinearity is due to the moving boundaries deter- 
mined by the pattern itself. Such phenomena include dendritic growth from super- 
cooled molten or oversaturated solutions (Langer 1980), two-fluid displacement in 
porous media (Paterson 1984), aggregation clusters (Witten and Sander 1981) or 
electrical breakdown (Sawada et af 1982). The common reason for inhomogeneous 
solutions is the instability to fluctuations. 

Since the introduction of the diffusion-limited aggregation ( DLA) model (Witten 
and Sander 1981) the Monte Carlo (MC) approach to these problems has attracted 
great interest (Witten and Sander 1981, 1983, Sawada et a1 1982, Rikvold 1982, Meakin 
1983, 1984, Racz and Vicsek 1983, Paterson 1984, Vicsek 1984). In the DLA model, 
particles diffuse from infinity and the stick on the boundary thereby changing its shape. 
In this letter we want to examine the DLA-based approach to dendritic growth and 
propose a different MC method. 

Let us now recall the equations of dendritic growth using the approximation that 
the temperature is constant in the solid phase (Langer 1980): 

where U is the dimensionless temperature in the liquid, d is the diffusion constant and 
do is the capillary length. The vector re represents a point of the solidification front 
parameterised by 6 (we restrict ourselves to two-dimensional problems), k is the 
curvature at such a point, n is the normal and U, is the normal velocity of the interface. 
In order to get instabilities, perturbations to (1) should be supposed, but here we do  
not have to consider them explicitly, since we shall deal with MC simulations, where 
fluctuations are in any case present. 
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In the case when diffusive relaxation is much faster than the growth of the crystal, 
the time derivative in ( l a )  can be neglected (Witten and Sander 1981). Thus we 
consider the following set of equations: 

U (Yo)  = gyo (2d) 

where yo is some large distance to be specified later. We take the coordinate system 
fixed to the laboratory frame. In the stationary case a planar interface along the x 
direction will move with constant velocity in the y direction and the stationary solution 
will be u ( x ,  y : t )  = - ( y  - ur)g. The boundary condition (2d) is chosen accordingly: 
using (2c), U = dg is obtained. Langer (1980) reviewed stationary solutions on the 
basis of ( 1 )  where the temperature field is exponentially varying along y.  Near to the 
interface, i.e. from the point of view of the pattern, our solutions can be fitted to those 
of Langer by fitting the parameter g. 

Let us take first in (2b) do=O corresponding to the limit of zero surface tension. 
U in ( 2 )  can be identified with the probability of finding a randomly walking particle 
at site r at time t if the particles have a source at yo and the interface re is a sink. 

In this representation DLA can be considered as a MC realisation of (2).  However, 
there are the following problems with this approach. 

( 1 )  In a MC determination of the probability U one should take an average over 
many runs. But in DLA every single run is taken as an independent contribution to 
the change of the surface without averaging. Since the problem is sensitive to any 
kind of perturbation, many microfluctuations, which would be averaged out, influence 
the shape of the pattern, resulting in a very ramified cluster (Witten and Sander 1981, 
1983, Meaking 1983, 1984, RBcz and Vicsek 1984). 

(2) When trying to handle the case of non-vanishing surface tenson (do f 0) on 
the DLA framework one usually operates with the sticking probability s. Witten and 
Sander (1983) argued, that with s < 1 one simulates the surface tension. However, it 
seems to us that this is rather a rough way of the above mentioned averaging. The 
generated clusters remain fractals (scale invariant objects, Mandelbrot 1982) on a scale, 
above a length determined by s (Witten and Sander 1983). Vicsek (1984) introduced, 
in addition to the curvature-dependent sticking probabilities of the 
particles, a relaxation of their position corresponding to surface diffusion. In this way 
he succeeded in generalising DLA, in that he obtained dendrite-like patterns: in fact 
Vicsek’s algorithm somehow takes both averaging and stabilising effects into account. 
However, the connection with physical parameters is not clear and in any method in 
which the sticking probability determines U at the boundary, u ( r 5 ) a g -  a result not 
compatible with ( 2 b ) .  

As a different simulation approach from DLA, we propose a MC model in which 
the above mentioned problems can be handled. In the standard MC method (Shreider 
1963), solving the Laplace equation A u  = 0 on a region p with the boundary condition 
u ( r * ) ,  randomly walking particles start at r e  p and the average is calculated over the 
values u ( r l ) ,  r ;  being the point where the ith particle hits the boundary. 

On this basis we construct the following simulation. We start from a straight 
solidification front of length L on the square lattice at Y = 0. (The lattice constant is 
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taken as unit length.) Let us call the points belonging to the solidification front 
boundary points ( B )  and the points of the liquid having neighbours on B perimeter 
points ( P ) .  (Henceforth the quantities in the model calculations are denoted by capital 
letters.) 

First let us show how to determine the value of U on the perimeter. N particles 
are started at every W, E P and 

1 
U (  Wi) = - U ( Z i j )  

N j  
( 3 )  

is taken, where 2, E B is the terminating point of the walk started at W, and U(Z,,) 
is determined by the discrete version of the RHS of (26). The curvature is calculated 
by a method similar to that of Vicsek (1984), from the occupation of a 7 X 7 square 
around Z,,. 

When changing the solidification front a point of P becomes one of B and new 
perimeter sites are created at the same time. This means that to every perimeter site 
W, a boundary site 2, can be assigned, namely that which has borne it, Z,( Wf). Like 
in the mother-child relationship this assignment does not work in the opposite direction. 
Having determined U (  Wf), the discrete version of V U = U (  W , )  - U(Z,) can be taken 
and the solidification front can be moved according to (2c). Denoting the velocity of 
the solidification front at W, by V (  W,),  

V (  W , )  = (1 lattice unit)/(AT) 

where AT is the time which has elapsed since the lattice site at Z,( W,) was occupied. 
The time is measured in MC step/site, i.e. going once along the perimeter P takes one 
time unit. 

At this point a technical remark is necessary. If the maximal extent of the developed 
pattern in the Y direction is denoted by Y,, it has no sense to follow the walking 
particles for Y > Y,. If it just leaves the domain of interest Y = Y,+ 1, it has two 
possibilities: either it reaches Yo-then the sum on the RHS of ( 3 )  would have a 
contribution U, = GYo-or it turns back to Y = Y,. Since the probability that the 
walking particle reaches Yo is approximately (1/ Yo) ( Yo >> Y, is assumed), we give 
the weight (1/ Yo) to this event and the weight ( Yo- 1)/ Yo- 1 to the event where it 
comes back to a point with Y = Y,. Therefore, if the Y coordinate of the particle 
exceeds Y,, the sum in ( 3 )  is enhanced by G and the particle is put back to Y = Y, 
with an X coordinate chosen from a proper distribution. It is clear from this consider- 
ation that the value of Yo is irrelevant if Yo >> Y,  is fulfilled during the whole process. 

We implemented the following algorithm. During the simulation the starting straight 
line develops into a pattern. Helical boundary conditions are taken in the X direction. 
For every point W, E P a function F (  W,) is defined, which has the value zero at the 
beginning. A W, E P is taken as a starting point of a random walk. If the walker leaves 
the domain of interest ( Y c Y,) the value DG is added to F (  W,) and the particle is 
put back to a point as described above. If the walk terminates at Z,,, the value of 
F (  W,) is enhanced by D( U ( Z , )  - U(Z , ) ) .  Then a new walker starts at ,  W,, and the 
procedure is repeated until all points of P are taken. Going N times along the perimeter, 
F will contain an approximate value of NDVU. If F becomes unity at a point W, 
this point is converted to an element of the solidification front B and at the same time 
it bears new perimeter sites. Identifying N by AT when F = 1, (2c) is fulfilled. After 
moving the interface, the value of F at the new perimeter sites is set to be zero. 
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In the computer simulation of this model we investigated how the instabilities occur 
and develop to dendrites when started from a planar interface and keeping the 
parameters 0, Do and G constant. This phenomenon has been investigated both 
theoretically and experimentally by several authors (see, for example, Langer 1980, 
Trivedi and Somboonsuk 1984), but we are not aware of quantitative results concerning 
the time dependence of the characteristic lengths. 

In figure 1 D = 0.12, Do = 0.12 and G = 0.03 were taken in order to have a relatively 
large averaging and to get a nice pattern within reasonable computing time. The width 
of the sample is L = 256 lattice units. The exact solution in the absence of noise would 
be the stationary motion of a planar interface. However, this motion is instable against 
fluctuations always present in a MC simulation. Due to this noise instabilities occur 
at the initial stage of the growth (figures l (a )  and l ( b ) ) .  After some time a characteristic 
length becomes observable (figures l (c )  and 1( d ) ) ,  reminiscent of the cellular structure. 
the amplitude differences become gradually stronger (figures l ( d )  and l (e)) .  The 
larger forms screen the smaller ones in a ‘struggle for life’ which leads to an appearance 
of longer characteristic wavelengths (figures l ( d ) ,  1( e)  and l (g) .  Later side branches 
develop showing the onset of the dendritic structure (figure l (g) .  The short wavelength 
roughness is caused by the MC noise. In figure 2 the characteristic wavelengths as a 
function of time are displayed determined from the maximal Fourier amplitudes of 
two set of figures like figure 1. We consider these as preliminary results and we intend 
to decrease the errors by statistics. 

The linear stability analysis (Langer 1980) of this model shows that the amplification 
rate-the sign of which determines the stability-vanishes at a wavenumber 

QS = ( G/Do)”2. (4) 

Figure 1. Pattern formation in our MC model. The parameters are given in the text. the 
time elapsed between the shown snapshots is 2000 M C  step/site. The form in ( g )  contains 
10 612 occupied sites. 
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Figure 2. Characteristic wavelengths A as a function of time T. A is measured in lattice 
units, T in M C  step/site. The parameters are the same as in figure 1. 

Using the Fourier analysis of the initially developed solidification front the wavelength 
A* belonging to the maximal amplitude can be determined. Physically A* = 2 r / (  Q,/2) 
is expected: changing the Do/G ratio by a factor of 4, A* should be doubled. In 
runs with different growth rates (governed by G) we obtained the predicted A* within 
20%, in good agreement with (4). 

Figure 3 shows a nice dendrite-like pattern in the limit, where the stabilising effect 
of the surface tension is negligible (small Do limit). We emphasise the difference of 
this figure compared to deposition patterns obtained by DLA (Meaking 1983, RAC, and 
Vicsek 1984): in our case the averaging due to D is still present. 

The simulation was carried out on a microcomputer based on a 2-80 microprocessor. 
Coding in assembler speeded up the program so much that only a factor of 10 remained 
compared with a FORTRAN program on an IBM 370/3031. We used about hundred 
computing hours for this work. 

In conclusion we investigated the MC simulation approach to the problem of pattern 
formation described by the diffusion equation and moving boundary conditions- 
essentially the problem of dendritic growth. One possible way is the generalisation of 
the DLA to include averaging and surface tension. Although we emphasise that DLA 

is interesting in its own right too, we believe we have defined a model where these 
effects can be more naturally introduced. The model is based on a well known MC 

Figure 3. Dendrite like pattern. D = 4 X lo-', Do = G = lo-', f = 5 X lo3, L = 256 
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method of solving the Laplace equation (Shreider 1963). The averaging procedure- 
controlled by D if Do and G are fixed-is an inherent part of this method. The 
stabilising effect of the surface tension is taken into account via a direct discretisation 
of ( 2 b )  instead of operating with sticking probabilities. The motion of the interface 
satisfies ( 2 c ) .  

Due to the immediate connection of our method with equations (2)-which is 
underlined by using the corresponding capital letters for the model-the results can 
be related to other theoretical approaches or even to experiments. Here we have put 
emphasis on the time evaluation of the pattern-an aspect which has not yet been 
studied by MC simulations. We presented the time dependence of the characteristic 
wavelengths based on computer realisations of our model. The wavelength first 
appearing is in good agreement with the linear stability analysis. 

Our model is suitable to incorporate further important physical effects like diffusion 
in the solid or on the surface. We intend to continue the investigation of this model 
from different aspects of pattern formation. 

Thanks are due to I Gaal and T Geszti for useful comments on the manuscript. 

Note added in proof: After completion of this work we learned about a preprint by L P Kadanoff (1985) 
which contains ideas somewhat similar to ours applied to a hydrodynamic instability. 
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